Chao
Chao
The chao calculator returns the Chao1 richness estimate for an OTU definition. This calculator can be used in the summary.single, collect.single, and rarefaction.single commands. The calculations for the bias-corrected Chao1 richness estimator are implemented as described by Chao in the user manual for her program spade and modified by Colwell in his program estimates.
Schao1=Sobs+n1(n1−1)2(n2+1)" role="presentation">Schao1=Sobs+n1(n1−1)2(n2+1)
where,
Schao1" role="presentation">Schao1 = the estimated richness
Sobs" role="presentation">Sobs = the observed number of species
n1" role="presentation">n1 = the number of OTUs with only one sequence (i.e. “singletons”)
n2" role="presentation">n2 = the number of OTUs with only two sequences (i.e. “doubletons”)
To calculate the 95% confidence intervals we assume a lognormal distribution of the variance:
var(Schao1)=n1(n1−1)2(n2+1)+n1(2n1−1)24(n2+1)2+n12n2(n1−1)24(n2+1)4" role="presentation">var(Schao1)=n1(n1−1)2(n2+1)+n1(2n1−1)24(n2+1)2+n12n2(n1−1)24(n2+1)4, when n1>0 and n2>0
var(Schao1)=n1(n1−1)2+n1(2n1−1)24−n144Schao1" role="presentation">var(Schao1)=n1(n1−1)2+n1(2n1−1)24−n144Schao1, when n1>0 and n2=0
var(Schao1)=Sobse(−N/Sobs)(1−e(−N/Sobs))" role="presentation">var(Schao1)=Sobse(−N/Sobs)(1−e(−N/Sobs)), when n1=0 and n2>=0
If n1>0, then:
C=exp(1.96ln⁡(1+var(Schao1)(Schao1−Sobs)2))" role="presentation">C=exp(1.96ln(1+var(Schao1)(Schao1−Sobs)2)) LCI95%=Sobs+Schao1−SobsC" role="presentation">LCI95%=Sobs+Schao1−SobsC UCI95%=Sobs+C(Schao1−Sobs)" role="presentation">UCI95%=Sobs+C(Schao1−Sobs)
Otherwise:
P=e(−N/Sobs)" role="presentation">P=e(−N/Sobs) LCI95%=max(Sobs,Sobs1−P−1.96(SobsP1−P)12)" role="presentation">LCI95%=max(Sobs,Sobs1−P−1.96(SobsP1−P)12) UCI95%=Sobs1−P+1.96(SobsP1−P)12" role="presentation">UCI95%=Sobs1−P+1.96(SobsP1−P)12
where,
LCI = Lower bound of confidence interval
UCI = Upper bound of confidence interval
Open the file 98_lt_phylip_amazon.fn.sabund generated using the Amazonian dataset with the following commands:
mothur > cluster(phylip=98_lt_phylip_amazon.dist, cutoff=0.10)
The 98_lt_phylip_amazon.fn.sabund file is also outputted to the terminal window when the cluster() command is executed:
unique 2 94 2 0.00 2 92 3 0.01 2 88 5 0.02 4 84 2 2 1 0.03 4 75 6 1 2 0.04 4 69 9 1 2 0.05 4 55 13 3 2 0.06 4 48 14 2 4 0.07 4 44 16 2 4 0.08 7 35 17 3 2 1 0 1 0.09 7 35 14 3 3 0 0 2 0.10 7 34 13 3 2 0 0 3
The first column is the label for the OTU definition and the second column is an integer indicating the number of sequences in the dominant OTU. The Chao1 estimator is then calculated using the values found in the third (the number of singletons)and fourth (the number of doubletons) columns. For example, chao for an OTU definition of 0.10 would be calculated as:
Schao1=55+34(33)2(14)=95.07" role="presentation">Schao1=55+34(33)2(14)=95.07 var(Schao1)=34(33)22(14)+34(2(34)−1)24(14)2+342(13)(33)24(14)4=341.2494" role="presentation">var(Schao1)=34(33)22(14)+34(2(34)−1)24(14)2+342(13)(33)24(14)4=341.2494 C=exp(1.96ln⁡(1+341.2494(95.07−55)2))=2.3641655" role="presentation">C=exp(1.96ln(1+341.2494(95.07−55)2))=2.3641655 LCI95%=55+95.07−552.3641655=71.9" role="presentation">LCI95%=55+95.07−552.3641655=71.9 UCI95%=55+2.3641655(95.07−55)=149.7" role="presentation">UCI95%=55+2.3641655(95.07−55)=149.7
Running...
mothur > summary.single(calc=chao)
...and opening 98_lt_phylip_amazon.fn.summary gives:
label Chao Chao_lci Chao_hci unique 1553.000000 658.490667 3870.016393 0.00 1141.500000 522.185603 2658.668444 0.01 731.000000 376.708692 1527.725165 0.02 1251.000000 533.812860 3124.532743 0.03 480.428571 262.946610 962.226261 0.04 315.600000 192.960027 572.578658 0.05 179.071429 123.996099 293.627620 0.06 143.200000 103.292208 228.234805 0.07 121.647059 91.793695 186.052404 0.08 92.055556 73.303947 135.389388 0.09 96.666667 74.012067 149.489903 0.10 95.071429 71.949979 149.732827 <---
These are the same values that we found above for a cutoff of 0.10.
网址:Chao https://m.mxgxt.com/news/view/1704134
相关内容
Cindy Chao:珠宝界的艺术大师赵又廷 Mark Chao的演员作品(33)
赵又廷 Mark Chao的全部作品(46)
Cindy Chao展,明星同款亮相
第69届金球奖明星红毯珠宝赏:邓文迪配戴 CINDY CHAO 皇家舞旦耳环
泰星Pat穿泰式婚纱被男友称赞可爱,雪碧妹妹Supa和Chao恋爱!
新CHAO
华北电力大学吴仲华学院
阿娇老公赖弘国离过一...
国潮天然钻石珠宝闪耀:倪妮杨幂等明星演绎东方美学
随便看看
- 岑矜李雾婚礼细节曝光,《狙击蝴蝶》暗藏八大伏笔
- 板子财富:张韶涵是被原生家庭坑得最惨的明星,没有之一。二十几岁的她,长相甜美,歌声动人,三年连发五张专辑,还参演了偶像剧《天国的嫁衣》,并在另一部偶像剧《海豚湾恋人》中饰演女主,迅速成为当时炙手可热的当红明星。 然而不幸的是,张韶涵有一个糟糕的原生家庭。15岁时,她的父亲在加拿大的生意失败,还患了心脏病,身为长女,她被迫承担养家糊口的重任。 从那时起,张韶涵除了上学之外,还要打零工赚外快,洗车...
- 盘点明星谈原生家庭,程潇直面原生家庭伤痛,沈梦辰把自己活成了骄傲
- 《抚养贝茨一家》明星凯蒂·克拉克宣布流产,心碎时刻全记录
- 选择洗衣机,这十款值得关注的节能省水明星!

