基于Transformer和知识图谱的新闻推荐新方法
发布时间:2025-05-31 19:02
计算机技术、通信工程 基于Transformer和知识图谱的新闻推荐新方法1. 天津财经大学 统计学院,天津 300222
2. 中央财经大学 信息学院,北京 100081New method for news recommendation based on Transformer and knowledge graphLi-zhou FENG1( ),Yang YANG1,You-wei WANG2,*( ),Gui-jun YANG11. School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China
2. School of Information, Central University of Finance and Economics, Beijing 100081, China 摘要 图/表 参考文献 相关文章 Metrics引用本文:
doi: 10.1109/MC.2009.2633 SUN Z, GUO Q, YANG J, et al Research commentary on recommendations with side information: a survey and research directions[J]. Electronic Commerce Research and Applications, 2019, 37 (1): 1- 304 WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation [C]// Proceedings of the 2018 World Wide Web Conference. Lyon: ACM, 2018: 1835-1844.5 WANG H, ZHANG F, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation [C]// Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM, 2019: 2000-2010.6 XIAN Y, FU Z, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris: ACM, 2019: 285-294.7 宁泽飞, 孙静宇, 王欣娟 基于知识图谱和标签感知的推荐算法[J]. 计算机科学, 2021, 48 (11): 192- 198
NING Ze-fei, SUN Jing-yu, WANG Xin-juan Recommendation algorithm based on knowledge graph and tag-aware[J]. Computer Science, 2021, 48 (11): 192- 198
doi: 10.11896/jsjkx.2010000858 WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems [C]// Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM, 2019: 3307-3313.9 WANG H, ZHANG F, WANG J, et al. Ripplenet: propagating user preferences on the knowledge graph for recommender systems [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018: 417-426.10 刘羽茜, 刘玉奇, 张宗霖, 等 注入注意力机制的深度特征融合新闻推荐模型[J]. 计算机应用, 2022, 42 (2): 426- 432
LIU Yu-xi, LIU Yu-qi, ZHANG Zong-lin, et al News recommendation model with deep feature fusion injecting attention mechanism[J]. Computer Applications, 2022, 42 (2): 426- 43211 CHEN Q, ZHAO H, LI W, et al. Behavior sequence transformer for e-commerce recommendation in Alibaba [C]// Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. Anchorage: ACM, 2019: 1-4.12 TANG J, WANG K. Personalized top-n sequential recommendation via convolutional sequence embedding [C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 565-573.13 冯永, 张备, 强保华, 等 MN-HDRM: 长短兴趣多神经网络混合动态推荐模型[J]. 计算机学报, 2019, 42 (1): 16- 28
FENG Yong, ZHANG Bei, QIANG Bao-hua, et al MN-HDRM: a novel hybrid dynamic recommendation model based on long-short-term interests multiple neural networks[J]. Journal of Computer Science, 2019, 42 (1): 16- 2814 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: MIT Press, 2017: 6000-6010.15 BANSAL T, DAS M, BHATTACHARYYA C. Content driven user profiling for comment-worthy recommendations of news and blog articles [C]// Proceedings of the 9th ACM Conference on Recommender Systems. Vienna: ACM, 2015: 195-202.16 KUMAR V, KHATTAR D, GUPTA S, et al. Deep neural architecture for news recommendation [C]// Proceedings of the 2017 Conference and Labs of the Evaluation Forum. Dublin: [s. n. ], 2017: 1-19.17 ZHANG Q, LI J, JIA Q, et al. UNBERT: user-news matching BERT for news recommendation [C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. Montreal: Morgan Kaufmann, 2021: 3356-3362.18 WU C, WU F, QI T, et al. Feedrec: news feed recommendation with various user feedbacks [C]// Proceedings of the ACM Web Conference. Lyon: ACM, 2022: 2088-2097.19 QI T, WU F, WU C, et al. Personalized news recommendation with knowledge-aware interactive matching [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Canada: ACM, 2021: 61-70.20 LIU D, LIAN J, LIU Z, et al. Reinforced anchor knowledge graph generation for news recommendation reasoning [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Singapore: ACM, 2021: 1055-1065.21 VRANDECIC D, KROTZSCH M Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57 (10): 78- 85
doi: 10.1145/262948922 XU B, XU Y, LIANG J, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system [C]// Proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Arras: Springer, 2017: 428-438.23 SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge [C]// Proceedings of the 16th International Conference on World Wide Web. Banff: ACM, 2007: 697-706.24 WU C, WU F, GE S, et al. Neural news recommendation with multi-head self-attention [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: ACL, 2019: 6389-6394.25 WU F, QIAO Y, CHEN J H, et al. Mind: a large-scale dataset for news recommendation [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3597-3606.26 MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space [C]// Proceedings of the 1st International Conference on Learning Representations. Scottsdale: [s. n. ], 2013: 1-12.27 HU L, XU S, LI C, et al. Graph neural news recommendation with unsupervised preference disentanglement [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4255-4264.ViewedFull text
Abstract
基于知识图谱的视频标签提取方法与流程
ACMMM2021|在多模态训练中融入“知识+图谱”:方法及电商应用实践
知识图谱推荐系统研究综述
辽宁蒲公英取得基于学习轨迹与知识图谱的课程推荐方法专利
厦门众联世纪取得用于广告推荐的知识图谱构建方法专利
知识图谱
ODA:基于观察驱动的智能体,用于集成LLMs和知识图谱
湖南上容取得基于知识图谱的图像识别优化方法专利
众星北斗申请基于用户画像的礼物推荐方法及系统专利,生成个性化的礼物推荐列表
2. 中央财经大学 信息学院,北京 100081New method for news recommendation based on Transformer and knowledge graphLi-zhou FENG1( ),Yang YANG1,You-wei WANG2,*( ),Gui-jun YANG11. School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China
2. School of Information, Central University of Finance and Economics, Beijing 100081, China 摘要 图/表 参考文献 相关文章 Metrics引用本文:
凤丽洲,杨阳,王友卫,杨贵军. 基于Transformer和知识图谱的新闻推荐新方法[J]. 浙江大学学报(工学版), 2023, 57(1): 133-143.
Li-zhou FENG,Yang YANG,You-wei WANG,Gui-jun YANG. New method for news recommendation based on Transformer and knowledge graph. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 133-143.
链接本文:https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.014 或 https://www.zjujournals.com/eng/CN/Y2023/V57/I1/133
1 LI L, CHU W, LANGFORD J, et al. A contextual-bandit approach to personalized news article recommendation [C]// Proceedings of the 19th International Conference on World Wide Web. Raleigh: ACM, 2010: 661-670.2 KOREN Y, BELL R, VOLINSKY C Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42 (8): 30- 37doi: 10.1109/MC.2009.2633 SUN Z, GUO Q, YANG J, et al Research commentary on recommendations with side information: a survey and research directions[J]. Electronic Commerce Research and Applications, 2019, 37 (1): 1- 304 WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation [C]// Proceedings of the 2018 World Wide Web Conference. Lyon: ACM, 2018: 1835-1844.5 WANG H, ZHANG F, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation [C]// Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM, 2019: 2000-2010.6 XIAN Y, FU Z, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris: ACM, 2019: 285-294.7 宁泽飞, 孙静宇, 王欣娟 基于知识图谱和标签感知的推荐算法[J]. 计算机科学, 2021, 48 (11): 192- 198
NING Ze-fei, SUN Jing-yu, WANG Xin-juan Recommendation algorithm based on knowledge graph and tag-aware[J]. Computer Science, 2021, 48 (11): 192- 198
doi: 10.11896/jsjkx.2010000858 WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems [C]// Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM, 2019: 3307-3313.9 WANG H, ZHANG F, WANG J, et al. Ripplenet: propagating user preferences on the knowledge graph for recommender systems [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018: 417-426.10 刘羽茜, 刘玉奇, 张宗霖, 等 注入注意力机制的深度特征融合新闻推荐模型[J]. 计算机应用, 2022, 42 (2): 426- 432
LIU Yu-xi, LIU Yu-qi, ZHANG Zong-lin, et al News recommendation model with deep feature fusion injecting attention mechanism[J]. Computer Applications, 2022, 42 (2): 426- 43211 CHEN Q, ZHAO H, LI W, et al. Behavior sequence transformer for e-commerce recommendation in Alibaba [C]// Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. Anchorage: ACM, 2019: 1-4.12 TANG J, WANG K. Personalized top-n sequential recommendation via convolutional sequence embedding [C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 565-573.13 冯永, 张备, 强保华, 等 MN-HDRM: 长短兴趣多神经网络混合动态推荐模型[J]. 计算机学报, 2019, 42 (1): 16- 28
FENG Yong, ZHANG Bei, QIANG Bao-hua, et al MN-HDRM: a novel hybrid dynamic recommendation model based on long-short-term interests multiple neural networks[J]. Journal of Computer Science, 2019, 42 (1): 16- 2814 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: MIT Press, 2017: 6000-6010.15 BANSAL T, DAS M, BHATTACHARYYA C. Content driven user profiling for comment-worthy recommendations of news and blog articles [C]// Proceedings of the 9th ACM Conference on Recommender Systems. Vienna: ACM, 2015: 195-202.16 KUMAR V, KHATTAR D, GUPTA S, et al. Deep neural architecture for news recommendation [C]// Proceedings of the 2017 Conference and Labs of the Evaluation Forum. Dublin: [s. n. ], 2017: 1-19.17 ZHANG Q, LI J, JIA Q, et al. UNBERT: user-news matching BERT for news recommendation [C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. Montreal: Morgan Kaufmann, 2021: 3356-3362.18 WU C, WU F, QI T, et al. Feedrec: news feed recommendation with various user feedbacks [C]// Proceedings of the ACM Web Conference. Lyon: ACM, 2022: 2088-2097.19 QI T, WU F, WU C, et al. Personalized news recommendation with knowledge-aware interactive matching [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Canada: ACM, 2021: 61-70.20 LIU D, LIAN J, LIU Z, et al. Reinforced anchor knowledge graph generation for news recommendation reasoning [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Singapore: ACM, 2021: 1055-1065.21 VRANDECIC D, KROTZSCH M Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57 (10): 78- 85
doi: 10.1145/262948922 XU B, XU Y, LIANG J, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system [C]// Proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Arras: Springer, 2017: 428-438.23 SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge [C]// Proceedings of the 16th International Conference on World Wide Web. Banff: ACM, 2007: 697-706.24 WU C, WU F, GE S, et al. Neural news recommendation with multi-head self-attention [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: ACL, 2019: 6389-6394.25 WU F, QIAO Y, CHEN J H, et al. Mind: a large-scale dataset for news recommendation [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3597-3606.26 MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space [C]// Proceedings of the 1st International Conference on Learning Representations. Scottsdale: [s. n. ], 2013: 1-12.27 HU L, XU S, LI C, et al. Graph neural news recommendation with unsupervised preference disentanglement [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4255-4264.ViewedFull text
Abstract
Cited
Shared Discussed网址:基于Transformer和知识图谱的新闻推荐新方法 https://m.mxgxt.com/news/view/1434415
相关内容
基于知识图谱的内容推荐算法研究与实现基于知识图谱的视频标签提取方法与流程
ACMMM2021|在多模态训练中融入“知识+图谱”:方法及电商应用实践
知识图谱推荐系统研究综述
辽宁蒲公英取得基于学习轨迹与知识图谱的课程推荐方法专利
厦门众联世纪取得用于广告推荐的知识图谱构建方法专利
知识图谱
ODA:基于观察驱动的智能体,用于集成LLMs和知识图谱
湖南上容取得基于知识图谱的图像识别优化方法专利
众星北斗申请基于用户画像的礼物推荐方法及系统专利,生成个性化的礼物推荐列表